hler and W. Gey:

ing transition temperatures $T_c(0)$ for zirconium from different authors

rystal Samples condition and history rucre^a

> Zr metal and paramagnetic salt mixed and pressed into a pill Unannealed pressed into salt pill Unannealed Heat treated at 970 K in He atmosphere After release of pressure from p > 10 kbar Machined from the as-cast sample after release of pressure from 45 kbar heat treated at 570 K: pressure 5×10^{-6} Torr Retransformed from ω -Zr at 570 K. pressure 5×10^{-6} Torr Retransformed from ω -Zr at 1270 K. pressure 5×10^{-6} Torr All sample surfaces coloured after heat treatment After release of pressure from 65 kbar Degassed and heat treated Cut and cold rolled at 300 K after release of pressure from $\gtrsim 40$ kbar after release of pressure from \gtrsim 50 kbar Cold worked at 4.2 K up to \sim 40 kbar Cut and cold rolled at 300 K after heat treatment at 1070 K

and 10^{-10} Torr Thin films evaporated at 370 K

and 5×10^{-8} Torr

been performed.

e compared with bulk transition temperatures, uence of lattice distortions on T_c .

le phase, and admixtures of other crystalline ues extending from 0.46 to 0.73 K can be found cause of the complex behaviour involved, no

oc. (London), Ser. A 151, 610 (1935). ev. 88, 1172 (1952). Palmy, C.: Phys. Letters 15, 303 (1965). J. W.: J. Vacuum Sci. Technol. 6, 184 (1969). Superconductivity in α - and ω -Zirconium Under High Pressure 331

satisfactory explanation can be given for the $T_c(0)$ values found in the present investigation. Extended and painstaking metallurgical analyses will be necessary to solve this problem properly.

Of greater importance for our investigations is the influence of the above mentioned defects on the pressure dependence. The small amounts of impurities in our samples will presumably not alter the variation of T_c with pressure. However, lattice defects will affect the $T_c(p)$ relationship quite drastically, as has been shown by the cold work experiments. Fortunately the residual resistance ratio as well as the transition width to the superconducting state provide means to control the grade of distortion of the samples. These same criteria also indicate the existence of a phase mixture. In our special case, α - and ω -Zr can be distinguished by their different T_c on p dependences. If in the low pressure region (≤ 45 kbar) ω -Zr were present in addition to α -Zr, one would find T_c values corresponding to the extrapolated straight line of the ω phase, since in electrical resistance measurements the higher of two transition temperatures will be detected.

Concluding Remarks

It has been shown that the earlier reported strong variation of T_c with pressure in zirconium⁵ is drastically lowered when the production of lattice distortions during application of pressure is reduced. The complex $T_c(0)$ and dT_c/dp behaviour is considered either a consequence of this sensitivity to lattice distortions or an indication of the existence of new high pressure phases other than ω -Zr.

The positive slope dT_c/dp in elemental zirconium is expected, if one starts from the rigid band model and a former knowledge of the pressure effect in Zr-Nb alloys. The value of dT_c/dp determined in the present investigation agrees rather well with the results of Gey and Köhnlein⁴, when their data are extrapolated to n=4. As was supposed in these papers, a decrease in volume should have the same influence on T_c as adding electrons to the rigid conduction band. Since in Zr the Fermi energy is near a minimum of the density of states, N will increase rapidly on filling the conduction band²³. Then it follows from the BCS-formula $(T_c \propto \exp - 1/NV)$ that T_c will rise*. A discussion in terms of the theory of McMillan¹ will fail at the time, because the pressure dependence of the important parameters λ and μ^* is not well-known.

^{*} It is assumed that V is approximately constant and that in these metals the band structure is not strongly affected by the different crystal structures²⁴.

²³ Eastman, D. E.: Solid State Commun. 7, 1697 (1969). - Loucks, T. L.: Phys. Rev. 159, 544 (1967).

²⁴ Merz, H., Ulmer, K.: Z. Physik 212, 435 (1968).